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Chapter 1 

Example 1.0-1 

Problem Statement 
Two sensors 

• Each has a single noise measurement 
• i iz x v= +  
• Unknown x is a constant 
• Measurement noises vi are uncorrelated (generalized in Problem 1-1 pages 7 and 

8) 
• Estimate of x is a linear combination of the measurements that is not a function of 

the unknown to be estimated, x 
 
We define a measurement vector y,  
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where 1 is a vector with all 1’s, and a linear estimator gain k, 
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and an estimate is a linear combination of the measurements: 
 ˆ Tx k y= ⋅ . 
We define an error (note difference in notation from the example, for consistency with 
later usage of similar notation) 
 ˆex x x= − . 
We require that k be independent of x and that the mean of the estimate be equal to x: 
 ( )ˆE x x=  
where E(*) is the expectation, or ensemble mean, operator. 
 
Solution:  We substitute the equations for the estimate and measurement to find a 
constraint on the linear estimator gain k as follows: 



 ( ) ( ) ( )( )ˆ 1T TE x E k y E k x v x= ⋅ = ⋅ ⋅ + = . 

The hypothesis of zero mean measurement noise is, in equation form, 
 ( ) 0E v =  
and we have 
 1 1Tk ⋅ =  
as the condition on the linear estimator gain.  Note that another solution is x=0, which we 
discard since x is an unknown and is not to be constrained, since we have required that k 
not depend on x. 
 
We minimize the mean square error, and denote what we are minimizing as J, which we 
will call a cost function.  This is a term for an optimization criterion.  This is 
 ( ) ( )( )22 ˆeJ E x E x x= = − . 

Again substituting from the above, we have 
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One term in this derivation contains a very special matrix, the covariance matrix of the 
measurement noise vector v: 
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We will leave in the correlation coefficient ρ  and not take it as zero as in the example, 
because, as we will quickly see, there is no immediate advantage in simplicity in 
dropping it out.  We well make it zero when appropriate later. 
 
We need to minimize J with respect to the linear estimator gain k, subject to the condition 
for an unbiased estimate.  We can do this directly, at the expense of the simple equation 
for the optimization criteria J that we have, and in the process make our solution specific 
to the problem statement and give up its generality for other problems.  A way to keep the 
problem linear and in the vector domain is to add a new equation with an additional 
unknown and link it to the original equation.  This is called the method of Lagrangian 
multipliers.  For our problem, the optimization criteria J becomes 
 ( )1 1T T

vJ k R k kλ= ⋅ ⋅ − ⋅ ⋅ − . 



The new variable λ  is the Lagrangian multiplier λ , and the optimization criteria is linear 
in λ  and quadratic in k.  What we will do is relax the constraint on k and apply the 
unbiased constraint on the solution to find a value for λ  to complete our solution. 
 
We proceed by taking the gradient of the optimization criteria with respect to k and set it 
equal to zero and find a solution: 
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We use the unbiased condition to find the value of the new variable λ : 
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Note that 
 1 11 1 sum of all the terms of T

v vR R− −⎡ ⎤⋅ ⋅ = ⎣ ⎦ . 
This leaves us with an equation for the linear estimator gain k: 
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This gives us a minimum value of the optimization criteria of 
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We will close with an explicit expression for the inverse of the covariance matrix of v: 
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The minimum value of the optimization criteria is 
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and the linear estimator gain k is 
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This basic technique and result can be applied to higher order problems.  In particular, 
see that problem 1-3 becomes simply a matter of writing the result, followed by a simple 
algebraic step.  In fact, for any number of uncorrelated measurements M, the general 
result is obvious from 
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Gelb Problem 1-1 
See the example for the estimation weights and minimum mean square error. 
 
In this problem we see from the expression for the minimum mean square error 
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that when ρ  is large and the error variances are not the same, that the minimum mean 
square error is smaller.  This means that we can use the information that the errors are 
correlated to help estimate the unknown x.  We can investigate what happens near 1ρ =  
by making the substitutions 
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and looking at the minimum mean square error: 
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When 1ρ = +  this means that the error in one of the measurements is proportional to the 
error in the other measurement.  If the RMS measurement errors are different, we can use 
that knowledge to find the unknown x exactly.  If they are equal, we have a singularity; 
we simply take the estimate as either of the measurements because they are equal  When 

1ρ = −  we can always use the knowledge that the errors are proportional to each other to 
find the unknown exactly. 

Gelb Problem 1-3 
This problem was worked as part of Example 1.0-1 as presented avove. 

Chapter 2 

Gelb problem 2-1 
Show that 
 1 1 1P P P P− − −= − ⋅ ⋅� �  
Solution:  We begin with 
 1P P I− ⋅ =  
and take the derivative of both sides of this equation with respect to time.  The result is, 
using the chain rule, 
 1 1 0P P P P− −⋅ + ⋅ =� �  
and the result follows from right-multiplying by 1P−  and moving the second term to the 
right-hand side. 

Gelb problem 2-2 
For the matrix 
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show that the eigenvalues are 2, -4, and 5. 
 
Solution:  The characteristic equation is 
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Expanding the determinant by minors about the left column, 
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Gelb Problem 2-3 
Show that A is positive definite if, and only if, all of the eigenvalues of A are positive. 
 
Solution:  The definition of the property “positive definite” is on page 21: 
 0Tx A x⋅ ⋅ >  
for all real x.  Note that the use of a quadratic form means that any real matrix can be 
replaced by the real symmetric matrix 

 ( )1
2

T
SYMA A A= ⋅ +  

so that a matrix in a quadratic form is implicitly symmetric.  From Gelp equation (2.1-46) 
page 19 and Linear Algebra, Crash Course page 111, an eigenvalue is a number λ  such 
that, for some vector x,  
 A x xλ⋅ = ⋅  
The vector x is the eigenvector corresponding to λ .  From Theorem 7.5, Linear Algebra, 
Crash Course page 112, the eigenvectors of a real, symmetric matrix are real and 
orthogonal.  Thus the set of eigenvectors may be considered as axes of a rotated 
coordinate system, and any vector is made up of a linear combination of eigenvectors.  
Thus, any quadratic from satisfies the inequality 
 T T

MINx A x x xλ⋅ ⋅ ≥ ⋅ ⋅  
Thus, if 0MINλ > , the matrix is positive definite. 

Gelb Problem 2-4 
If R(t) is a time-varying orthogonal matrix, and 



 ( ) ( ) ( )TdR t
R t S t

dt
⋅ =  

show that S(t) must be skew-symmetric. 
 
Solution:  Construct the product 
 ( ) TR t R I⋅ =  
where the product is the identity matrix because R(t) is orthogonal, or its transpose is its 
inverse, as defined in the paragraph following equation (2.1-35) on page 18.  Taking the 
time derivative of this equation and using the chain rule, 
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dt dt
⋅ + ⋅ =  
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which shows that the left-hand side of the equation in the problem statement is skew-
symmetric.  Thus, the righ-hand side, S(t), must be skew-symmetric. 

Gelb Problem 2-5 
Show that the matrix 

 
1 2
3 4

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

satisfies the polynomial equation 
 2 5 2 0A A I− ⋅ − ⋅ =  
and find the eigenvalues.  Use the results to show the form of the solution in terms of 
exponential functions. 
 
Solution:  The characteristic equation is found from 
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The Cayley-Hamilton theorem (bottom of page 19) states that a matrix satisfies its own 
characteristic equation, so we have proven the polynomial matrix equation. 
 
From the polynomial equation, we can use 
 2 5 2A A I= ⋅ + ⋅  
to reduce any polynomial or series in A to a linear combination of A and I.  The 
eigenvalues are 

 5 33
2

λ ±
=  

The remaining equation, to find the closed forms for a1(t) and a2(t), where 



 ( ) ( ) ( )1 2exp A t a t I a t A⋅ = ⋅ + ⋅  
is done as follows.  First for a two-by-two matrix, the Cayley-Hamilton theorem gives us 
 ( )2

1 2 1 2 0A A Iλ λ λ λ− + ⋅ + ⋅ ⋅ =  
or, 
 ( )2

1 2 1 2A A Iλ λ λ λ= + ⋅ − ⋅ ⋅  
This equation means that the matrix exponential series as given by Equation (2.1-48) on 
page 20 can be collapsed to a linear combination of I and A.  Since we are looking at 

( )exp A t⋅ , we use 

 ( ) ( ) ( )2 2
1 2 1 2A t t A t tλ λ λ λ⋅ = + ⋅ ⋅ ⋅ + ⋅ ⋅  

Note that the eigenvalues of ( )A t⋅  are the eigenvalues of A multiplied by t. 

Scalar General Solution for Order Two 
The Cayley-Hamilton theorem tells us that the matrix itself satisfies its characteristic 
equation, but we know also that both the eigenvalues also satisfy the characteristic 
equation.  Since the characteristic equation is used to collapse the series for the 
exponential into a polynomial of order N-1 (a first-order polynomial for two by two 
matrices), we also have 
 ( ) ( ) ( )1 2exp , 1, 2i it a t a t iλ λ⋅ = + ⋅ =  
We can write this equation down for both eigenvalues and solve for a1(t) and a2(t): 
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is a set of two linear equations in a1(t) and a2(t), and can be solved for a1(t) and a2(t).  
The solution is 
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These can be substituted into the two linear equations in a1(t) and a2(t) to verify that they 
are correct.  We can differentiate the series for ( )exp A t⋅  term by term and show that 

 ( ) ( )exp expd A t A A t
dt

⋅ = ⋅ ⋅  

and use this to verify the solution we have for a1(t) and a2(t).  Note that a1(t) and a2(t) as 
we have found them are the same as given in the problem statement when it gives is “the 
form a1(t) and a2(t) (a hint that there may be a sign difference or a proportionality factor 
between the equations given there and the exact solution as we have found here), but the 
sign of the form for a1(t) given in the problem statement is incorrect. 



General Matrix Solution 
We can extend the result to higher order matrices by simply writing the set of two linear 
equations in equations in a1(t) and a2(t) as a set of N linear equations in a set of N time 
functions: 
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This set of equations can be written as a vector equal to a matrix times a vector: 

 

( )
( )
( )

( )

( )
( )
( )

( )

2 1
1 11 1 1

2 1
2 22 2 2

2 1
3 33 3 2

2 1

exp1
exp1
exp1

exp1

N

N

N

N
N NN N N

a t t
a t t
a t t

a t t

λλ λ λ
λλ λ λ
λλ λ λ

λλ λ λ

−

−

−

−

⋅⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ = ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

…
…
…

# ## % #
…

 

The set of ai(t) are found by left-multiplying this equation by the inverse of the matrix.  
The solution to part (b) of the problem can easily be seen to be given by this equation for 
N=2. 
 
The matrix is a special form, its rows being given by successive powers of different 
constants.  The determinant of such a matrix is called a Vandermonde determinant and is 
very famous, and a lot of papers have been written about it.  In particular, a closed form 
for this determinant is (see Introduction to Matrix Analysis, Second Edition, by Richard 
Bellman, page 193) 
 ( )1

1

j
i j i

i j N

λ λ λ−

≤ < ≤

= −∏  

Note that the matrix is singular if any two eigenvalues are equal. 

Chapter 3 
Example 3.1-2 Page 56 
The Schuler loop is the differential equation for an inertial navigation system (INS).  A 
simple form is to look at one axis.  An INS usually needs a north-south and an east-west 
loop, and these loops are coupled, but we can understand some basic principles by 
examining this simplification. 
 
We define the quantities of interest in terms of differential equations.  The quantities are 
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We define the errors as 
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ε
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From first principles, we have the differential equations 
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The block diagram shown as Figure 3.1-4 on page 56 follows from these equations.  
Given these differential equations, we can collect them and express them in vector-matrix 
form as 

 d x A x G v
dt

= ⋅ + ⋅  

where 
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We can use Laplace transforms to analyze this equation to understand the form of the 
solutions.  The Laplace transform of the differential equation is 
 ( ) ( ) ( ) ( )0s X s x A X s G V s⋅ − = ⋅ + ⋅  
The solution in the s domain is 
 ( ) ( ) ( ) ( )( )1 0X s s I A x G V s−= ⋅ − ⋅ + ⋅  
Thus we can understand the nature of the solution by examining the eigenvalues of the 
matrix A.  The characteristic equation of A is 

 2 0
e

gs
R

+ =  

This shows that the INS steady state is an undamped oscillation.  You can easily show 
that this period is about 84 minutes, which is why an INS is sometimes called an 84-
minute pendulum.  Use the elementary equation for the period of a pendulum as a 
function of its length find the length of a “real” 84-minute pendulum. 

Gelb Problem 3-1 
The linear variance equation is the differential equation for propagation of errors of a 
noise-driven system.  This is developed in Section 3.7, Propagation of Errors, pp. 75-78.  
The linear variance equation is given as Equation (3.7-17) at the bottom of page 77: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) TP t F t P t P t F t G t Q t G t= ⋅ + ⋅ + ⋅ ⋅�  
The problem statement is to verify a solution as given: 



 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0, , , ,
t

T T T

t

P t t t P t t t t G Q G t dτ τ τ τ τ τ= Φ ⋅ ⋅Φ + Φ ⋅ ⋅ ⋅ ⋅Φ ⋅∫  

The simplest way to do this is to take the derivative of the candidate expression for P(t) 
and show that the right-hand-side of the differential equation is obtained.  In doing this, 
we need the definition from equations (3.7-13) and (3.7-14) on page 77, 
 ( ) ( ) ( )t F t tΦ = ⋅Φ�  
and Leibnitz’ rule for differentiation of an integral, 
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dt dt dt dt

⎛ ⎞
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⎝ ⎠
∫ ∫  

Because of the size of the equations, we will take one term at a time.  We begin with 
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Repeating this operation on the integrand for P(t) produces the remainder of the terms in 
( ) ( ) ( ) ( )F t P t P t F t⋅ + ⋅ .  Leibnitz’ rule on the integral, as applied to the limits of the 

integral, produce the term 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,T T Tt t G t Q t G t t t G t Q t G tΦ ⋅ ⋅ ⋅ ⋅Φ = ⋅ ⋅  
and we are done. 

Gelb, Problem 3-2 
When F and Q are constant matrices, we have 
 ( ) ( )( )0 0, expt t F t tΦ = ⋅ −  
The given equation is equal to the linear variance equation for constant P and for the 
noise mapping matrix G as the identity matrix I, but for the time derivative of the 
covariance equal to zero.  By looking at the case 0P =� , we are asking for the steady-state 
form for the solution, or what happens as t →∞ .  We use the assumption of a stable 
system, 
 ( )lim exp 0

t
F t

→∞
⋅ =  

and the solution to the linear variance equation given in the first problem to show that the 
steady-state covariance for 0 0t = , constant F, and G equal to the identity matrix I as 

 ( ) ( ) ( )
0

0 exp exp TP F Q F dτ τ τ
∞

∞ = + ⋅ ⋅ ⋅ ⋅ ⋅∫  

which is the form desired. 
 

Chapter 4 
See the separate section Multivariate Gaussian Distribution below. 



Summary of Equations of the Kalman Filter 
State Vector x, measurement vector y, measurement model 
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State vector extrapolation model 
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Covariance extrapolation approximation 
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State vector extrapolation approximation 
 ˆx x−= Φ ⋅�  
Kalman gain 

 ( ) 1T TK P H H P H R
−
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or, if we have P available before K is computed, 
 1TK P H R−= ⋅ ⋅  
State vector update 
 ( )( )x̂ x K y h x= + ⋅ −� �  
Covariance extrapolation short form 
 ( ) Short form; NUMERICALLY UNSTABLEP I K H P= − ⋅ ⋅ �  
Joseph stabilized form for covariance extrapolation (good for most applications) 
 ( ) ( )T TP I K H P I K H K R K= − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅�  
Normal form or information matrix format for covariance extrapolation – use to check for 
accuracy of Joseph stabilized form: 
 1 1 1TP P H R H− − −= + ⋅ ⋅�  
Other:  square root filters (not treated in Gelb; overview in the next course) 

Gelb Problem 4-1 
Repeat example 1.0-1 with a Kalman filter, treating the measurements as sequential and 
simultaneous. 
 
Sequential measurements: 
 



We are estimating a constant so that F=I and Q=0.  We have one element in the state 
vector so it is just a scalar.  The measurement model is conventional.  For the first 
measurement, we begin with the assumption that we have no information, so K=1 and 

2
1P σ= .  Then, for the second measurement, we have 
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The estimate is 
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and the covariance is 
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Simultaneous measurements: 
Here we have a scalar state vector, two elements in the measurement vector, and we work 
with unknown prior data by taking P�  as very large.  We use the information form for the 
covariance matrix, 
 1 1 11 1TT

vP H R H P− − −= ⋅ ⋅ = ⋅ ⋅  
where we have dropped out the 1P−�  term because we assume no prior information.  We 
have the Kalman gain from P as 
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This form allows us to keep the correlations, as we did in the vector approach to Example 
1.0-1, and thus to have a ready solution to problem 1-1. 



The Alpha-Beta Tracker 
The measurements are a sequence of data points yi and the states are position and 
velocity, arranged in a state vector x: 
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At the first measurement, before another is available, the measurement is used:: 
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The position and velocity estimates are defined at the second measurement: 
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Extrapolation from last update (needed to prepare values for last update): 
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Update using new data yi: 

 ( ) [ ]
( )

1 , 1 0

ˆ

i
i

i i ii i

K
T

h x x H x H

x x K y H x

βα
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
= = ⋅ =

= + ⋅ − ⋅� �
 

Relationship between α  and β  
The most commonly used value of β  is 
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The choice of α  is determined by signal-to-noise ratio, time between updates, target 
behavior, etc.  A plot of β  as a function of α  is: 
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The alpha-beta tracker as a vector-matrix recursive filter: 
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The alpha-beta tracker as a recursive filter is 
 ( ) 1ˆ ˆi ii i ix I K H x K y−= − ⋅ ⋅Φ ⋅ + ⋅  

The Z Transform of the Alpha-Beta Tracker 
The recursive digital filter equation is of the general form 
 1i i i

s A s B y−= ⋅ + ⋅  
This is simple one-pole filter, posed in vector-matrix notation.  For the alpha-beta tracker, 
when the time between updates Ti is constant, the A matrix is 
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The characteristic values of the matrix A are 
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Note that the characteristic values are not a function of the update time T.  For the value 
of β  in terms of α  as given above, the characteristic values as a function of α  are as in 
this table:  A root locus of the poles of the transfer function of the filter in the z plane is: 
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The Multivariate Gaussian Distribution 

Gaussian Random Variables 
A continuous random variable is called Gaussian with mean m and variance σ  if its 
probability density function is 
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Multiple Correlated Gaussian Random Variables 
The probability density function of multiple independent Gaussian random variables with 
mean zero and variance one is 

 

( ) ( ) ( ) ( )

( )

1 2

2

1

2
2

2 1

1 1exp
22

1 1exp
22

N

N

i
i

N

iN
i

p y p y p y p y

y

y

π

π

=

=

= ⋅

⎛ ⎞= ⋅ − ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ − ⋅⎜ ⎟
⎝ ⎠

∑

∑

…

 

 
Note that we can write the sum in the exponential as a quadratic form, 
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We define another vector of random variables x as a set of linear combinations of the 
random variables y, 
 x R y= ⋅  
where R is any real matrix.  For simplicity here we will also assume that R is square and 
nonsingular.  We find the probability density function of x by equating the differentials 
 ( ) ( )p x d x p y d y⋅ = ⋅  
and we use the Jacobian 
 d x R d y= ⋅  
We also note that the covariance of x, Px, is given by 
 T

xP R R= ⋅  
We leave as an exercise in algebra to show that 
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