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DETERMINANTS, COFACTORS, AND INVERSES 

 
 
 

1 1.0  GENERAL 

Determinants originally were encountered in the solution of simultaneous linear 
equations, so we will use that perspective here.  A general statement of this problem is:  if 
the N by N matrix A and the N-vector y, both consisting of real or complex elements, are 
known, solve the N equations 

 A x v⋅ =  (1.1) 
for the N elements of the vector x.  In the paragraphs that follow, the essentials of solving 
simultaneous linear equations will be examined. 

The determinant is the key quantity and will be explored first.  This will be used 
as a basis for finding the properties and computation of the solutions for the elements of 
the vector x. 

In solving for an element of x, individual equations involving a single element of 
y, or rows of the equation as given above, are scaled and added to other rows to eliminate 
dependence on elements of x, until only a single element of x occurs in a row; then the 
equation for this element may be solved.  Systematically eliminating the first element 
from the second and lower rows, the second element from the third and lower rows, etc. 
allows element N of x to be found first.  Then element N-1 can be found, etc.  This 
process is called Gaussian elimination, and is discussed in more detail later. 

The solution for each element of the vector x is in the form of the ratio of 
polynomials in the elements of the matrix A and the vector y.  The denominator is always 
the same polynomial in the elements of the matrix A and is called the determinant.  Each 
term has N factors, one from each row and one from each column. 

In the process of performing Gaussian elimination, two fundamental properties of 
the determinant have been noted.  These are the axiomatic properties: 
 

(a) The value of the determinant of a diagonal matrix is the product of the 
values along the main diagonal. 

 
(b) The value of the determinant of a matrix is unchanged when any row is 

multiplied by a constant and added to any other row. 
 

2 EULER'S EXPANSION 

Euler's expansion of a determinant is an expansion of each of the terms in the determinant 
in terms of the elements of the rows.  We define it as the sum 
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where 
1 2 3 Np p p pε "  is +1, -1, or zero, depending on the indices p1, p2, etc.  This dependence 

is expressed by the following rules: 
 

(a) If any two arguments pi and pj are equal, 
1 2 3 Np p p pε "  is zero. 

(b) All subscripts of 
1 2 3 Np p p pε "  are distinct if it is nonzero, by (a) above.  The 

arguments can therefore be reordered to obtain the monotonic sequence 
(1,2,3,...N) by interchanging adjacent arguments (for example, by using a 
bubble sort procedure).  If the number of interchanges to produce the 
monotonic sequence is even, the value of 

1 2 3 Np p p pε "  is +1.  If the number 
of interchanges is odd, the value s is -1. 

 
There are N! terms in the summation.  We will show that Euler’s expansion has all the 
properties of the determinant, and thus is equal to the determinant. 

From this explanation, it is seen that is 
1 2 3 Np p p pε "  equal to the determinant of a 

matrix formed by constructing each row n by placing a 1 in column np  and zeros in the 
other columns.  The determinant of a matrix formed by replacing row i with zeros except 
for a 1 at column j is called the cofactor of element ai,j because it represents the only term 
in the determinant that has a factor of ai,j.  The quantity 

1 2 3 Np p p pε "  is called the completely 
antisymmetric tensor of rank N. 

The sum given by Euler's expansion can be shown to be equal to the value of the 
determinant by showing that the two axiomatic properties apply.  Since the Euler's 
expansion for a matrix defines a unique value for the determinant, this serves as a proof 
that the value of the determinant of a matrix is uniquely defined by the two axiomatic 
properties.  Restating this as a theorem: 
 
THEOREM:  The unique value of the determinant of a square matrix of real or complex 
numbers is given by Euler's expansion. 
 
PROOF:  The fact that the value of the sum of a diagonal matrix is the product of the 
terms on the diagonal is immediately obvious.  To complete the proof, we only need to 
show that the value of the sum is unchanged by adding one row, multiplied by a constant 
c, to another row.  Suppose row i is multiplied by c and added to row j, where j is not i.  
The sum is 

 

( )1 2 3 1

1 2 3

1 2 3 1

1 2 3

1, , , ,
, , 1

1, , ,
, , 1

.

N j i N

N

N i N

N

N

p p p p p j p i p N p
p p p p

N

p p p p p i p N p
p p p p

A a a c a a

A c a a a

A

ε

ε

=

=

= ⋅ + ⋅

= + ⋅ ⋅

=

∑

∑

"
"

"
"

… …

… …  (2.2) 



Copyright 1989-2006 by James K Beard, an unpublished work.  All rights reserved Page 3 of 10 

The sum in the second line is the determinant of a matrix with two identical rows.  In 
order to avoid circular logic, it is necessary to avoid properties of the determinant not 
shown at this point, and to show that this sum is zero using only the form given 
immediately above for the sum.  This is done by noting that, for each distinct pair of 
indices (pi,pj), the same term in the summation appears for 

1 2 3 Np p p pε "  equal to +1 and to -
1 for the term where the indices are reversed, (pj,pi).  This is because, if the indices are r 
rows apart, r interchanges are required to move pi up to row pj, and r-1 interchanges are 
required to move pj down to the initial position of pj.  This is a total of 2.r-1 interchanges, 
which is always an odd number, so that the sign of 

1 2 3 Np p p pε "  is reversed.  This completes 
the proof. 

Euler's expansion can be used to show that the axiomatic properties apply to 
columns as well as rows as follows.  The diagonal matrix property applies directly.  From 
Euler's expansion, multiplying column pi by c and adding to column pj gives the sum 
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The second sum in the last form given for C does not contain any elements of the matrix 
A corresponding to column pj.  It is the determinant of the matrix A modified by having 
column pj replaced by column pi.  Since the sign of 

1 2 3 Np p p pε "  is reversed when the 
arguments pi and pj are reversed in the subscript list of 

1 2 3 Np p p pε " , but the remainder of the 
term in the sum remains the same, the value of the sum is zero.  Restating this result as a 
theorem, 
 
THEOREM:  Any operation on the rows of a matrix which leaves the value of the 
determinant unchanged can also be applied to the columns and also leaves the value of 
the determinant unchanged. 
 
PROOF:  The proof follows from the preceding discussion.  Since the axiomatic 
properties defining the determinant are the same for columns as for rows, and since all 
operations on the rows which leave the determinant unchanged follow from the axiomatic 
properties, these operations also leave the determinant unchanged when applied to 
columns.  This completes the proof. 

2.1 Minors and Cofactors 
Euler's expansion can be used to show the dependence of the determinant on a 

single element.  This is most simply expressed as 
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where the only allowable value of pi in the sum is j, and the element of the matrix A in 
row i is +1.  This is clearly the determinant of the matrix A, modified by setting to zero 
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all elements in row i and column j except the element in position (i,j), which is +1.  
Comparison with the minor about this same position, defined as the determinant of the 
matrix A with row i and column j removed, 
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it is clear that the determinants are the same, except possibly for sign.  Comparing the 
two sign functions in the sums, it can be seen that 
 

(a) The sign functions are the same if j=i, because setting the argument i 
equal to i reduces the N argument sign function to the N-1 argument sign 
function. 

(b) If j differs from i by 1 (or any odd number), an odd number of 
interchanges must be made in the arguments of the cofactor's sign function 
to reduce it to the case where j=i, so that it is the negative of the sign 
function for the minor. 

(c) Conversely, if j differs from i by any even number, an even number of 
interchanges must be made in the arguments of the cofactor's sign function 
to reduce it to the case where j=i, so that it is the same as the sign function 
for the minor. 

 
Thus, the cofactor of element (i,j) is equal to value of the minor about (i,j) when i+j is 
even, and the cofactor of element (i,j) is the negative of the minor about (i,j) when i+j is 
odd. 
 

2.2 Expansion by Cofactors: Laplace's Development 
 
From the previous discussion, it can be seen immediately that the sum across any row of 
the matrix A of the cofactors of that row times the elements in that row is equal to the 
value of the determinant: 
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By the symmetry discussed above, the determinant can also be expressed as a 
similar sum over any column as well.  This equality is also called expansion by minors. 
 

2.3 The Inverse 
 
The inverse of a matrix is easily verified to be given by 

 1
,i jA c− ⎡ ⎤= ⎣ ⎦  (2.7) 

where 
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The form given for the inverse follows from an analysis of the vector 

 ( ) ( ),cof Cof T
k kj kb a a A a⎡ ⎤= ⋅ = ⋅⎣ ⎦  (2.9) 

where ak is row k of the matrix A.  For any row i, the element of b is equal to a 
determinant of a matrix in which every row is equal to the corresponding row of A except 
row i, which is replaced by row k.  Thus, every row of b is zero, except row k, which is 
equal to |A|.  From this, it is evident that 
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When |A| is not zero, the inverse exists and is given by 

 
( )1

Cof TA
A

A
− =  (2.11) 

which is the proposed definition of the inverse. 
 

2.4 Cramer's Rule 
 
When solving the N equations in N unknowns 

 A x y⋅ =  (2.12) 
for x, the solution is obviously 
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From the discussion above on expansion by minors, row i of the product  Cof(AT).x is 
equal to the determinant of a matrix made up by replacing column i of the matrix A with 
the vector x: 
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This can be useful when N is small, or when only a few elements of the vector y are to be 
found. 
 
 

3 GAUSSIAN ELIMINATION 

 

The process of diagonalizing a matrix by adding scaled rows to other rows is 
called Gaussian elimination.  The first column below the top row can be annihilated 
(reduced to zeros) as follows.  The elements of the matrix A are represented by 

 ,i jA a⎡ ⎤= ⎣ ⎦  (3.1) 
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where the first subscript refers to the row and the second refers to the column.   Axiom 
(b) is used by multiplying the first row by -(ai,1/a1,1) and adding to each row i below the 
first.  The result is a matrix which has all zeros in the first column, except for the element 
a1,1, which is unchanged from that of the original matrix. 

The operation of annihilating the first column of a matrix A by Gaussian 
elimination is equivalent to left-multiplying the matrix by an upper triangular matrix G1 
which has ones on the main diagonal and zeros elsewhere except across the top row, 
which contains the ratios -(ai,1/a1,1) in column i. 

The second column of the modified matrix can be annihilated below a2,2 by 
repeating the process, except that the first row is ignored this time and the second row is 
scaled and added to the other rows.  This process is repeated for the third column and 
other columns until the result is a triangular matrix.  The annihilation of each column is 
equivalent to left-multiplying by an upper triangular matrix which has ones on the main 
diagonal. 

For the purposes of programming Gaussian elimination as an algorithm or to tie 
up loose ends for a rigorous proof, the special case of encountering a zero element on the 
main diagonal during the course of the progression of the algorithm must be considered.  
Suppose that, after annihilating column j-1, element aj,j is zero.  When this does occur, 
any row below row j which contains a nonzero value for the element in column j can be 
added to row j to obtain a new row which contains a nonzero element on the main 
diagonal.  If there are none, Gaussian elimination continues with the next row because 
annihilation of column j is unnecessary. 

Once an upper triangular matrix is obtained, the columns above the main diagonal 
can be eliminated in the same way, this time beginning with the bottom row.  Notice that 
eliminating the upper triangular portion does not change the values of the diagonal 
elements during the procedure. 

If one of the diagonal elements aj,j is zero, the entire row j of the matrix is zero 
once columns j+1 through N have been annihilated, so that the value of the determinant is 
zero, as is shown in property (6) below. 
 
 

4 ELEMENTARY PROPERTIES OF THE DETERMINANT 

 

From the two axiomatic properties (a) and (b) above, and from Euler's expansion, 
several properties of the determinant of a matrix immediately follow: 
 
(1) The value of the determinant of a triangular matrix is the product of the values 

along the main diagonal.  This is because a triangular matrix can be converted to a 
diagonal matrix by using (b) above without changing the elements on the main 
diagonal. 
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(2) The property (b) applies to columns also, as was shown in the discussion of 
Euler's expansion. 

 
(3) Since the properties determining the value of a determinant are symmetrical for 

rows and columns, the value of the determinant of the transpose of a matrix is the 
same as the determinant of the matrix. 

 
(4) Since (b) and (2) are exactly equivalent to left-multiplying and right multiplying a 

matrix by a triangular matrix with ones on the main diagonal, it also follows that 
multiplying a matrix by triangular matrices whose main diagonal elements are all 
ones results in a matrix whose determinant is equal to the determinant of the 
original matrix. 

 
(5) Multiplying any row or column by a constant results in a matrix whose 

determinant is the determinant of the original matrix multiplied by the same 
constant; this follows immediately from Euler's expansion. 

 
(6) A determinant of a matrix with a row (or column) of all zeros, or which is equal 

or proportional to another row (or column) is zero, since this determinant is equal 
to another determinant times zero. 

 
(7) The determinant of the product of two matrices A*B is the product of their 

determinants.  This is because the matrix A can be converted to an upper (or 
lower) triangular form by Gaussian elimination by rows, which is equivalent to 
left multiplication by a triangular matrix with ones on the main diagonal, while 
the matrix B can be converted to upper (or lower) triangular form by columns.  
The values of the diagonal elements of the product of the two triangular matrices 
At and Bt are given as the products of the corresponding diagonal elements of At 
and Bt. 

 
(8) Interchanging any two rows (or columns) of a matrix toggles the arithmetic sign 

of the value of its determinant.  This can be seen because it is equivalent to left (or 
right) multiplication by an identity matrix which has the same columns (or rows) 
interchanged.  This matrix is easily converted to a triangular matrix which has a -
1 on the main diagonal. 

 

5 A GEOMETRICAL INTERPRETATION OF THE DETERMINANT 

 

The determinant of a matrix can be interpreted in terms of its row (or column) 
vectors in N-space: 

The value of the determinant of an N by N matrix is the volume of the 
parallelepiped defined by a vertex at the origin and subtended by its row 
vectors in N-space. 
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This is shown in geometric terms as follows.  First, we must agree that the volume of the 
parallelepiped is, when all the sides are orthogonal, the product of the lengths of the 
sides.  When the sides are not orthogonal, the volume of the parallelepiped is equal to the 
volume of another parallelepiped which is obtained from the first parallelepiped by 
moving its vertices in a direction parallel to one of its subtending vectors.  This is 
illustrated for a parallelogram: 
 
          _________       __________ 
         /        /  -->  |        | 
        /________/        |________| 
 
The vertical sides were "squared up" with the horizontal sides by adding components 
parallel to the horizontal sides, and the area of the rectangle is equal to the volume of the 
parallelogram. 
 
For a general matrix, this process can proceed as follows.  Starting with the bottom row 
aN, the next lowest row aN-1 can be squared up with this vector by adding to it a vector 
parallel to aN.  After this operation, row N-1 is 

 1
1

T
N N

N NT
N N

a aa a
a a

−
−

⋅
= ⋅

⋅
 (5.1) 

which can be seen to be orthogonal to aN.  This operation does not change the height or 
depth of the parallelepiped with respect to the vector aN or any facet bordered by the 
vector aN.  Since this operation is an example of (a) above, the determinant is not 
changed. 
 
This operation is identical to left-multiplying the original matrix by an upper triangular 
matrix with ones on the main diagonal and zeros everywhere else except for the element 
at row N-1 and column N, which is equal to 

 1
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N N

N N T
N N
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a a
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The row third from the bottom can be squared up with the bottom two rows by 
subtracting the components along them in the same way.  The matrix V now contains 
nonzero elements in row N-2 above the main diagonal.  The elements in row N-2 are 
found as the ratio of dot products exactly as in the first example.  Continuing in this way 
results in a matrix whose rows are orthogonal, and the definition of all the elements of a 
matrix V which is upper triangular with ones on the main diagonal. 

This process is known as Gram-Schmidt orthogonalization.  Representation of 
Gram-Schmidt orthogonalization by rows as left-multiplication by an upper triangular 
matrix with ones on the main diagonal is a concept that will be used later in the 
formulation of special Kalman filter techniques. 

At this point, we represent the operation as 

 0A V A= ⋅  (5.3) 
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where V is upper triangular with ones on the main diagonal, and A0 consists of rows 
which are orthogonal.  We can factor A0 into a diagonal matrix D, the values of the 
diagonal elements being given by the lengths of the rows of A0, and the matrix A0 with its 
rows rescaled so that they all are of length one: 

 0sA V D A= ⋅ ⋅  (5.4) 
It is easy to show that 

 0 0
T

s sA A I⋅ =  (5.5) 
so that the value of the determinant of Aos is plus or minus one and the value of the 
determinant of A is given by the product of the elements of D, which is the volume of the 
parallelepiped subtended by the origin and the row vectors of A0.  Since we carefully 
ensured that the volume subtended by the row vectors of A0 was the same as that 
subtended by the row vectors of A, we have now proved the theorem. 

There is one loose end; the arithmetic sign of the determinant has not been 
addressed.  Since the determinant of A0s appears on both sides of 

 0 0
T T
os s sA A V D A A⋅ = ⋅ ⋅ ⋅  (5.6) 

then what we have is that if the value of the determinant of A is negative, then the value 
of the determinant of A0s is -1. 

The rows of A A0s are orthogonal unit vectors.  Considering A0s as a 
transformation, the operation of A0s on a vector b, 

 0sb A b′ = ⋅  (5.7) 

 
 
 b' = Aos*b 
 
we see that each element of b' is the projection of b onto each of the unit vectors given by 
the rows of A0s.  This means that if the rows of A0s are considered as the axes of a rotated 
Cartesian coordinate system, then the elements of b' are the components of b in that 
coordinate system.  We know that the determinant of any such matrix will necessarily be 
plus or minus one.  At this point, we will make an arbitrary definition: 
 

DEFINITION:  A coordinate system is right-handed if the determinant of a 
matrix T, made up of its unit vectors used as rows in the order, is positive.  If 
the determinant of T is negative, the coordinate system is left-handed. 

 

If the square matrix T consists of row vectors which are of magnitude one and 
which are mutually orthogonal, left-multiplication of column vectors by T produces a 
result which is the representation of the vector in the rotated Cartesian coordinate system 
whose axes are represented by the rows of T. 

The definition of right-handed versus left-handed applies to oblique coordinate 
systems, since the process of Gram-Schmidt orthogonalization does not reverse the 
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direction of any row except along the direction of previously defined orthogonal basis 
vectors. 


