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1 Definition of Estimation theory 
Estimation theory is the science of solutions to the problem of estimating the value of 
unknown parameters from noisy measurements of related quantities.  This includes the 
definition and analysis of estimation methods, their accuracy, and their use in practical 
problems. 
 
A function of data is called a statistic.    A function of the data which approximates an 
unknown parameter is an estimator.  Thus, estimation theory is the design, analysis, 
evaluation, and use of estimators, which are statistics computed from available data. 
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2 Course Overview 
We have only five sessions, and we must define the scope of our material carefully to 
provide a clear treatment of selected topics in that time.  We wil 

• Define estimation theory and its basic types. 
• Define and explain the differences in quality and accuracy of the most common 

estimators. 
• Show examples of estimators that you can use in your work. 
• Show how to devise and evaluate estimators for new problems 
• Show solutions to problems specific to data fusion issues 

3 Accuracy and Confidence Limits 
A confidence limit is a probability that is set as part of an experiment design as an a 
priori threshold on the significance of results of the experiment.  For example, if we want 
to be 95% sure that our data is biased before we declare that our experiment has shown 
that it is biased, then we will devise an estimator for the bias, find the probability 
distribution function for the estimator under the condition that a bias is not present, and 
set thresholds at the 5% points in this distribution.  Then, the results of an ensemble of 
experiments will declare the data unbiased 95% of the time when it is, indeed, unbiased. 
 
Setting confidence limits requires that the requirements of the experiment be understood.  
The impact of incorrect interpretation of the experiment are part of the process of setting 
confidence limits. 

4 Properties of Estimators 

4.1 The Unbiased and Consistency Properties 
An unbiased estimator is one whose ensemble mean is equal to the value of the unknown 
parameter. 
 
A consistent estimator is one which approaches the value of the unknown parameter as 
the number of measurements increases without bound. 

4.2 Sufficiency 
A sufficient estimator is one that uses all the information in the available data that applies 
to estimating the value of the unknown parameters. 
 
The Neyman-Fisther Factorization Theorem says that an estimator ( )xφ  is sufficient if, 
and only if, the conditional probability density of the data given the states can be factored 
in this way: 
 ( ) ( ) ( ),p y x g x h yφ= ⋅  (4.1) 

where h(y) is independent of x.  This is important in mathematical proofs of sufficiency.  
We will not have the time in this course to delve into the mathematics of estimation 
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theory to the extent that we will use this but you should remember it as background, and 
try to understand what it means in terms of the property of sufficiency. 

4.3 Invariance 
An estimator ( )xφ  is invariant if, when applied to a nonlinear but single-valued function 

of the parameters ( )f x , the result is ( )( )f xφ .  A sufficient estimator will always be 
invariant. 

4.4 Efficiency 
An estimator is efficient (or, statistically efficient) if the variance of the estimator is the 
smallest that is obtainable by any estimator.  If an estimator is sufficient and unbiased, it 
will be efficient. 
 
A term that I sometimes use that is not found in the literature as a standard term is 
statistical efficiency.  Occasionally an ad hoc estimator that is commonly used has a 
variance that is demonstrably less than the Cramer-Rao bound, or that of an efficient 
estimator that is available.  An example is averaging the absolute values of the errors to 
estimate standard deviation instead of averaging the squared errors to find the sample 
variance.  I call the ratio of the variances the statistical efficiency of the estimator.  When 
the statistical efficiency is 100%, the estimator is efficient in the classical usage of the 
term “efficient estimator.” 

5 Types of Estimators 

5.1 Ad Hoc 
Estimators that seem “correct” but that have no provenance in estimation theory are 
common.  An example is estimating the number of fish of various types that exist in a 
lake.  The technique that is normally used is to band or mark a small number and return 
them, then look at the number of fish that are caught of each type.  For each type, the 
ratio of fish that are caught that are banded to those that are not banded is considered to 
be the best estimate of the number that were banded and thrown back and the rest in the 
lake. 

5.2 Averages 
Simply averaging noisy quantities to obtain an estimate of their ensemble average is a 
common example.  This method is easily analyzed in terms of the accuracy of the 
estimate. 

5.3 Least Squares 
Least squares is a simple technique that was first used by Gauss to determine orbits of 
celestial bodies and the Earth from astronomical observations.  An example we 
commonly use is a way to fit a polynomial to a set of data points.  If we denote the set of 
M data points as 
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 ( ), , 1i ix y i M= …  (5.1) 
and wish to fit a polynomial pN(x) of degree N to those points, we have 
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We define a cost function as the total squared error: 
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and find the polynomial coefficients that minimize the total squared error J.  We can pose 
the problem in vectors and matrices and write the solution immediately.    We collect the 
polynomial coefficients aj, the powers of the independent variables xi, and the dependent 
variables yi as vectors: 
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The data equations become 
 y X a= ⋅  (5.7) 
where the rows of the matrix X are the vectors xi: 
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The error vector ye is 
 

e
y y y= −  (5.9) 

and the total squared error J is 
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We find the value of a that minimizes the total squared error J with simple calculus.  We 
take the gradient of J with respect to a to get N equations in N unknowns and solve: 

 ( )2 0TJ X X a y
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The solution is 
 ( ) 1T Ta X X X y

−
= ⋅ ⋅ ⋅  (5.12) 

The matrix XT.X is very interesting and, because it occurs in this very common problem, 
it has been studied quite a bit.  It is of the form 
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When M=N then X is square and we can simply invert X to find a polynomial that passes 
through all the points; in this case, X is a Vandermonde matrix, which occurs also in other 
problems.  The Vandermonde matrix is known to be ill-conditioned – that is, practical 
problems in accuracy are often encountered in inverting it.  When M>N, we are doing a 
least-squares fit of data to a polynomial, which is a smoothing operation, not a 
polynomial fit.  The matrix for this operation as given by (5.13) is less troublesome than 
the Vandermonde matrix, and problems are rarely encountered when M>>N. 
 
Also instructive is the product X.y: that we use when M>N: 
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Note that these sums can be accumulated as data is accrued, so that only the partial sums 
need be kept in memory as the data is collected.  Since the element at row p and column q 
of XT.X is given by 

 ( ) 2
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This allows these terms to be accumulated as data is accrued also. 

5.4 Maximum Likelihood 
The method of maximum likelihood is based on a simple principle.  In general, we can 
usually write the conditional probability density function of the data, given the states: 
 ( ) ( )Likelihood x p y x=  (5.16) 

This is called the likelihood equation because at the time that R. A. Fisher devised it, the 
common term for the probability density function was the likelihood function.  This 
method is simple to use because the likelihood function can be written easily whenever 
the probability density function of the errors in the measurements can be characterized, 
which is nearly all the time.  Estimators found in this way are called maximum likelihood 
estimators (MLEs).  We will present the method of maximum likelihood in greater detail 
later today. 

5.5 Maximum a Posteriori 
We can write a conditional probability distribution of the states x, given the 
measurements y, as a posterior probability of x given y: 
 ( ) ( ),PP x y p x y=  (5.17) 
If we find the states x that maximize this as a function of the observed data y, this is the 
maximum a posteriori (MAP) estimator. 
 
From Bayes’ rule, we know that conditional probabilities are given in terms of joint 
probabilities according to the rule 
 ( ) ( ) ( ) ( ) ( ),p x y p x y p y p y x p x= ⋅ = ⋅  (5.18) 

where the probability densities of separate sets of variables are given by 
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Thus the posterior probability function can be written in three forms: 

 ( ) ( ) ( ) ( )
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,
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Thus the MAP estimator can be applied whenever we can write any one of these. 
 
When the a priori probability density function of x is unknown without other 
information, as is often the case, and p(x) is taken as uniform, the MAP estimator reduces 
to the MLE. 
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5.6 Bayesian Mean  
If we look at the probability distribution of the states x given the measurements y, and we 
use it to compute the mean of the states given the measurements y, 
 ( )x̂ x p x y d x= ⋅ ⋅∫  (5.21) 
is called the Bayesian mean estimator.  This estimator can be shown to be minimum 
variance, and thus is sufficient, and often it produces an efficient estimator.  In addition, 
it is unbiased.  These properties make is a method of choice in mathematical 
developments but in real-world cases the difficulty in writing ( )p x y  and then 
performing the integral make its use less practical than the MLE. 
 
The MLE produces estimators that are the same as those produced as the Bayseian mean 
except in cases where nonlinearities exist between the measurements and the states.  
When this occurs, the MLE is biased while the Bayesian mean is not, while both are 
minimum variance estimators.  The difficulty in removing the mean from the MLE is 
typically less than that in implementing a Bayesian mean estimator and produces an 
equivalent result. 

6 The Method of Maximum Likelihood 

6.1 Definition and properties 
The method of maximum likelihood is based on a simple principle.  In general, we can 
usually write the conditional probability density function of the data, given the states: 
 ( ) ( )Likelihood x p y x=  (6.1) 

This is called the likelihood equation because at the time that R. A. Fisher devised it, the 
common term for the probability density function was the likelihood function. 
 
The method of maximum likelihood is based on the idea that if you find the states x that 
maximize the value of the likelihood function for the observed values of the 
measurements y, then you would have a “good” estimator.  The importance of maximum 
likelihood estimators (MLEs) lies in the fact that these properties have been proven for it: 

• MLEs are sufficient and consistent. 
• MLEs are asymptotically unbiased. 
• The errors in MLEs are asymptotically Gaussian. 
• MLEs are asymptotically efficient. 
• If an unbiased, efficient estimator exists, the MLE will be that estimator. 

 
The MLE is useful in our work is because 

• Nearly all common estimators can be shown to be found by the method of 
maximum likelihood, including the examples given  

• The method of maximum likelihood is easily stated and applied for nearly all 
practical problems. 
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• When the measurement errors are distributed by a rule other than Gaussian 
random variables, the method of maximum likelihood can be easily applied 
without approximation. 

• MLEs are usually simple to write, implement, and analyze. 
 

6.2 The Likelihood Equations and the MLE 
Most probability density functions are given primarily in terms of an exponential. 
Examples are Gaussian, Rayleigh, and Poisson.  An exception is the Cauchy distribution.  
As such, we usually proceed with the log likelihood function, 
 ( ) ( )( )lnL x p y x=  (6.2) 

We then find the maximum of this function as the states x are varied through ordinary 
calculus.  We take the gradient of the log likelihood function L(x) and set it equal to zero 
to form the likelihood equation: 

 ( ) ( )ˆ 0
L x

l x
x

∂
= =

∂
 (6.3) 

This is N equations in N unknowns.  Much is said by some that the generality of this 
equation makes it suspect, particularly in the fact that such an equation can have many 
roots.  In practical cases this happens only in cases where the result is predictable and 
easily handled, such as in phase ambiguities of 2π  radians.  When this equation does 
have multiple solutions, then the solution or solutions with the largest value of the log 
likelihood function are the solution.  If there are multiple such solutions, the ambiguous 
results are part of the solution to the estimation problem. 
 
The solution to the likelihood equation (6.3) is the MLE.  Now, we need to know the 
covariance of the estimate.  The Fisher Information Matrix is the second gradient of the 
log likelihood function: 
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 (6.4) 

Fisher showed in his landmark papers (see the Library) that the asymptotic value of the 
covariance of the estimate is 
 1P F −=  (6.5) 
 
This value of the covariance matrix is called the Cramer-Rao Bound. 
 
If the likelihood equation (6.3) is linear in the states, the MLE is unbiased and 
statistically efficient, and its covariance is given by (6.5).  If the likelihood equation is 
nonlinear, the MLE is sufficient, asymptotically unbiased, and asymptotically efficient. 

6.3 The MLE for Mean and Covariance of Correlated Gaussian 
Variables 

Suppose that we have a series of samples of a distribution that is Gaussian, but we do not 
know the mean or covariance of the distribution.  Thus, our measurements are 
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and our states are 
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The likelihood function is 

 ( ) ( )
1

M

j
j

p y x p y x
=

=∏  (6.8) 

where each set of measurements yi has the probability distribution 
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The log likelihood function is 
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We find separate likelihood functions for m and R, solving for m first: 
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The solution to this one is simple: 
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We find the covariance R by using the property of consistency, and solving for R-1 
instead.  We do this taking the gradient of the log likelihood equation with respect to the 
matrix R-1.  We need a couple of identities from our work with gradients first, though.  
See Gelb’s Equation (2.1-75) page 23 for 

 
( )1 1

1 11

ln 1R R
R

R RR

− −

− −−

∂ ∂
= ⋅ =

∂ ∂
 (6.13) 

and Gelb’s Equation (2.1-72) e\page 23 for 
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With these two equations, we have the likelihood equation for the covariance as 
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This has the solution 
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Note that the estimator for m̂  is linear, so it is statically efficient and unbiased.  However 
the estimator for R̂  involves m̂  so that this part of the estimator is nonlinear.  The 
inclusion of m̂  can be seen to make the sum have one less degree of freedom, and to 
make the variation in each sample smaller by a factor of (M-1)/M.  A more rigorous 
analysis will bear out that an unbiased estimator of the covariance is 
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6.4 Covariance of Estimates 
We can use (6.4) and (6.11) to obtain the Cramer-Rao bound for the covariance of m̂ .  
The Fisher information matrix for m̂  is 
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from which we have the covariance of the estimate m̂ : 

 1 1 ˆ
mP R R

M M
= ⋅ ≈ ⋅  (6.19) 

Since the estimate of m is linear, this covariance, the Cramer-Rao bound, is applicable 
because the estimator is efficient. 
 
The remainder of the covariance is more complex.  The estimator for 1R̂−  is nonlinear, 
and in fact the state vector contains both the elements of m and R, a total of M2+M 
elements, not just M. 

7 The Kalman Update as an MLE 
We can easily pose the Kalman update as an MLE by focusing on the meausurement data 
and the extrapolated state vector.  To avoid a notation clash here, we will denote the 
measurement for the Kalman filter update as yy and reserve the standard notation for 
measurements y as our measurements for the MLE.  The data is then 
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and the covariance of the measurements is 
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The mean values of the measurements are 
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We can write the conditional probability as 
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The log likelihood equation is 
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The likelihood equation is 
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We note that we can use the first two terms of a Taylor series, 
 ( ) ( ) ( )ˆ ˆh x h x H x x= + ⋅ −  (7.7) 
and the likelihood equation becomes 
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or, 
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from which we get the Kalman update: 
 ( )( )x̂ x K yy h x= + ⋅ −  (7.10) 
where the Kalman gain K is 
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The covariance P of the estimate is found from 
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The update, Kalman gain, and covariance of the estimate are as given in the Kalman filter 
equations. 
 
Note that the Kalman filter extrapolation is an application of the linear covariance 
propagation equations.  Thus, between those and the development of the update equations 
that we have here, we have a complete derivation of the Kalman filer equations. 
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